Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Uneven selection pressure accelerating divergence of Populus and Salix.

Identifieur interne : 000646 ( Main/Exploration ); précédent : 000645; suivant : 000647

Uneven selection pressure accelerating divergence of Populus and Salix.

Auteurs : Jing Hou [République populaire de Chine] ; Suyun Wei [République populaire de Chine] ; Huixin Pan [République populaire de Chine] ; Qiang Zhuge [République populaire de Chine] ; Tongming Yin [République populaire de Chine]

Source :

RBID : pubmed:30962934

Abstract

Populus (poplars) and Salix (willows) are sister genera in the Salicaceae family that arise from a common tetraploid ancestor. The karyotypes of these two lineages are distinguished by two major interchromosomal and some minor intrachromosomal rearrangements, but which one is evolutionarily more primitive remains debatable. In this study, we compare the selection pressure acting on the paralogous genes resulting from salicoid duplication (PGRS) within and between the genomes of the two lineages. Purifying selection was determined to act more strongly on the PGRS in willow than on those in poplar, which would cause a faster loss of paralogous duplicates in willow. Therefore, Salix species are supposed to evolve faster than Populus species, which is consistent with the observation that the former are taxonomically and morphologically more diverse than the latter. In these two lineages, different autosomes were found to have been evolving into sex chromosomes. Examining the ω ratio and the PGRS in the sex determination regions in willow and poplar revealed higher convergent selection pressure and a faster loss of PGRS in the sex determination regions of both lineages. At the chromosome level, the sex chromosome in poplar is characterized by the lowest gene density among all chromosome members, while this feature is not observed on the sex chromosome in willow, suggesting that Populus species may inherit the more incipient sex chromosome from their progenitor. Taken together, Salix is supposed to be the nascent lineage arising from the additional round of genome reorganization that distinguishes the karyotypes of the two sister genera. In this study, assessment of ω ratios also detected a list of paralogous genes under unusual selection pressure, which could have special consequences for the adaptive evolution of Salicaceae species. In conclusion, the results of this study provide unique information for better understanding the genetic mechanism accelerating the divergence of these two closely related lineages.

DOI: 10.1038/s41438-019-0121-y
PubMed: 30962934
PubMed Central: PMC6450953


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Uneven selection pressure accelerating divergence of
<i>Populus</i>
and
<i>Salix</i>
.</title>
<author>
<name sortKey="Hou, Jing" sort="Hou, Jing" uniqKey="Hou J" first="Jing" last="Hou">Jing Hou</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Key Laboratory for Cultivar Innovation and Germplasm Improvement for Salicaceae Species, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Key Laboratory for Cultivar Innovation and Germplasm Improvement for Salicaceae Species, College of Forestry, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wei, Suyun" sort="Wei, Suyun" uniqKey="Wei S" first="Suyun" last="Wei">Suyun Wei</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Key Laboratory for Cultivar Innovation and Germplasm Improvement for Salicaceae Species, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Key Laboratory for Cultivar Innovation and Germplasm Improvement for Salicaceae Species, College of Forestry, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pan, Huixin" sort="Pan, Huixin" uniqKey="Pan H" first="Huixin" last="Pan">Huixin Pan</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Key Laboratory for Cultivar Innovation and Germplasm Improvement for Salicaceae Species, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Key Laboratory for Cultivar Innovation and Germplasm Improvement for Salicaceae Species, College of Forestry, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhuge, Qiang" sort="Zhuge, Qiang" uniqKey="Zhuge Q" first="Qiang" last="Zhuge">Qiang Zhuge</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Key Laboratory for Cultivar Innovation and Germplasm Improvement for Salicaceae Species, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Key Laboratory for Cultivar Innovation and Germplasm Improvement for Salicaceae Species, College of Forestry, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yin, Tongming" sort="Yin, Tongming" uniqKey="Yin T" first="Tongming" last="Yin">Tongming Yin</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Key Laboratory for Cultivar Innovation and Germplasm Improvement for Salicaceae Species, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Key Laboratory for Cultivar Innovation and Germplasm Improvement for Salicaceae Species, College of Forestry, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30962934</idno>
<idno type="pmid">30962934</idno>
<idno type="doi">10.1038/s41438-019-0121-y</idno>
<idno type="pmc">PMC6450953</idno>
<idno type="wicri:Area/Main/Corpus">000954</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000954</idno>
<idno type="wicri:Area/Main/Curation">000954</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000954</idno>
<idno type="wicri:Area/Main/Exploration">000954</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Uneven selection pressure accelerating divergence of
<i>Populus</i>
and
<i>Salix</i>
.</title>
<author>
<name sortKey="Hou, Jing" sort="Hou, Jing" uniqKey="Hou J" first="Jing" last="Hou">Jing Hou</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Key Laboratory for Cultivar Innovation and Germplasm Improvement for Salicaceae Species, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Key Laboratory for Cultivar Innovation and Germplasm Improvement for Salicaceae Species, College of Forestry, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wei, Suyun" sort="Wei, Suyun" uniqKey="Wei S" first="Suyun" last="Wei">Suyun Wei</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Key Laboratory for Cultivar Innovation and Germplasm Improvement for Salicaceae Species, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Key Laboratory for Cultivar Innovation and Germplasm Improvement for Salicaceae Species, College of Forestry, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pan, Huixin" sort="Pan, Huixin" uniqKey="Pan H" first="Huixin" last="Pan">Huixin Pan</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Key Laboratory for Cultivar Innovation and Germplasm Improvement for Salicaceae Species, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Key Laboratory for Cultivar Innovation and Germplasm Improvement for Salicaceae Species, College of Forestry, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhuge, Qiang" sort="Zhuge, Qiang" uniqKey="Zhuge Q" first="Qiang" last="Zhuge">Qiang Zhuge</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Key Laboratory for Cultivar Innovation and Germplasm Improvement for Salicaceae Species, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Key Laboratory for Cultivar Innovation and Germplasm Improvement for Salicaceae Species, College of Forestry, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yin, Tongming" sort="Yin, Tongming" uniqKey="Yin T" first="Tongming" last="Yin">Tongming Yin</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Key Laboratory for Cultivar Innovation and Germplasm Improvement for Salicaceae Species, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Key Laboratory for Cultivar Innovation and Germplasm Improvement for Salicaceae Species, College of Forestry, Nanjing Forestry University, Nanjing</wicri:regionArea>
<wicri:noRegion>Nanjing</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Horticulture research</title>
<idno type="ISSN">2052-7276</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<i>Populus</i>
(poplars) and
<i>Salix</i>
(willows) are sister genera in the Salicaceae family that arise from a common tetraploid ancestor. The karyotypes of these two lineages are distinguished by two major interchromosomal and some minor intrachromosomal rearrangements, but which one is evolutionarily more primitive remains debatable. In this study, we compare the selection pressure acting on the paralogous genes resulting from salicoid duplication (PGRS) within and between the genomes of the two lineages. Purifying selection was determined to act more strongly on the PGRS in willow than on those in poplar, which would cause a faster loss of paralogous duplicates in willow. Therefore,
<i>Salix</i>
species are supposed to evolve faster than
<i>Populus</i>
species, which is consistent with the observation that the former are taxonomically and morphologically more diverse than the latter. In these two lineages, different autosomes were found to have been evolving into sex chromosomes. Examining the ω ratio and the PGRS in the sex determination regions in willow and poplar revealed higher convergent selection pressure and a faster loss of PGRS in the sex determination regions of both lineages. At the chromosome level, the sex chromosome in poplar is characterized by the lowest gene density among all chromosome members, while this feature is not observed on the sex chromosome in willow, suggesting that
<i>Populus</i>
species may inherit the more incipient sex chromosome from their progenitor. Taken together,
<i>Salix</i>
is supposed to be the nascent lineage arising from the additional round of genome reorganization that distinguishes the karyotypes of the two sister genera. In this study, assessment of ω ratios also detected a list of paralogous genes under unusual selection pressure, which could have special consequences for the adaptive evolution of Salicaceae species. In conclusion, the results of this study provide unique information for better understanding the genetic mechanism accelerating the divergence of these two closely related lineages.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30962934</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2052-7276</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>6</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>Horticulture research</Title>
<ISOAbbreviation>Hortic Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Uneven selection pressure accelerating divergence of
<i>Populus</i>
and
<i>Salix</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>37</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41438-019-0121-y</ELocationID>
<Abstract>
<AbstractText>
<i>Populus</i>
(poplars) and
<i>Salix</i>
(willows) are sister genera in the Salicaceae family that arise from a common tetraploid ancestor. The karyotypes of these two lineages are distinguished by two major interchromosomal and some minor intrachromosomal rearrangements, but which one is evolutionarily more primitive remains debatable. In this study, we compare the selection pressure acting on the paralogous genes resulting from salicoid duplication (PGRS) within and between the genomes of the two lineages. Purifying selection was determined to act more strongly on the PGRS in willow than on those in poplar, which would cause a faster loss of paralogous duplicates in willow. Therefore,
<i>Salix</i>
species are supposed to evolve faster than
<i>Populus</i>
species, which is consistent with the observation that the former are taxonomically and morphologically more diverse than the latter. In these two lineages, different autosomes were found to have been evolving into sex chromosomes. Examining the ω ratio and the PGRS in the sex determination regions in willow and poplar revealed higher convergent selection pressure and a faster loss of PGRS in the sex determination regions of both lineages. At the chromosome level, the sex chromosome in poplar is characterized by the lowest gene density among all chromosome members, while this feature is not observed on the sex chromosome in willow, suggesting that
<i>Populus</i>
species may inherit the more incipient sex chromosome from their progenitor. Taken together,
<i>Salix</i>
is supposed to be the nascent lineage arising from the additional round of genome reorganization that distinguishes the karyotypes of the two sister genera. In this study, assessment of ω ratios also detected a list of paralogous genes under unusual selection pressure, which could have special consequences for the adaptive evolution of Salicaceae species. In conclusion, the results of this study provide unique information for better understanding the genetic mechanism accelerating the divergence of these two closely related lineages.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hou</LastName>
<ForeName>Jing</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>The Key Laboratory for Cultivar Innovation and Germplasm Improvement for Salicaceae Species, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</Affiliation>
<Identifier Source="GRID">grid.410625.4</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wei</LastName>
<ForeName>Suyun</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>The Key Laboratory for Cultivar Innovation and Germplasm Improvement for Salicaceae Species, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</Affiliation>
<Identifier Source="GRID">grid.410625.4</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pan</LastName>
<ForeName>Huixin</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>The Key Laboratory for Cultivar Innovation and Germplasm Improvement for Salicaceae Species, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</Affiliation>
<Identifier Source="GRID">grid.410625.4</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhuge</LastName>
<ForeName>Qiang</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>The Key Laboratory for Cultivar Innovation and Germplasm Improvement for Salicaceae Species, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</Affiliation>
<Identifier Source="GRID">grid.410625.4</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Tongming</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>The Key Laboratory for Cultivar Innovation and Germplasm Improvement for Salicaceae Species, College of Forestry, Nanjing Forestry University, Nanjing, 210037 China.</Affiliation>
<Identifier Source="GRID">grid.410625.4</Identifier>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>04</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Hortic Res</MedlineTA>
<NlmUniqueID>101655540</NlmUniqueID>
<ISSNLinking>2052-7276</ISSNLinking>
</MedlineJournalInfo>
<CoiStatement>The authors declare that they have no conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>06</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>12</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>12</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>4</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>4</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>4</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30962934</ArticleId>
<ArticleId IdType="doi">10.1038/s41438-019-0121-y</ArticleId>
<ArticleId IdType="pii">121</ArticleId>
<ArticleId IdType="pmc">PMC6450953</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Genomics. 2010 Feb 23;11:129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20178595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Sep 27;449(7161):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17721507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Dec;18(12):1944-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18832442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics Proteomics Bioinformatics. 2010 Mar;8(1):77-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20451164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Apr;40(7):e49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22217600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Basic Life Sci. 1979;13:3-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">550830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Nov 10;290(5494):1151-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11073452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hortic Res. 2014 May 21;1:14024</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26504539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 2003 Dec;29(3):365-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14615180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hortic Res. 2017 Dec 27;4:17079</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29285397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:2797</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24256998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W609-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 Apr;151(4):1531-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10101175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4649-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12665616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1993 Apr;86(2-3):301-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24193473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2002;3(2):RESEARCH0008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11864370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2015 Jun;114(6):575-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25649501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2010 Oct;42(10):833-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20802477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Mar;18(3):422-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18256239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:433-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19575588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2002 Nov;3(11):827-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12415313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2006 Jun;16(6):738-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16702410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2000;34:401-437</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11092833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2018 Dec;293(6):1437-1452</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30022352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2007 Sep;278(3):221-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17609979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Jan;22(1):95-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21974993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 May 5;473(7345):97-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21478875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Feb;169(2):1157-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15654095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2016 Jun 27;8(6):1868-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27352946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Mar 13;5:9076</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25766834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2019 Feb;17(2):451-460</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30044051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2014 Oct;24(10):1274-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24980958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 May 23;5:3930</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24852848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosoma. 2018 Sep;127(3):313-321</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29520650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13875-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19667210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 19;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2006 May;7(5):337-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16619049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Jun;18(6):1348-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16632643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Dec 12;302(5652):1960-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14671302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 May;25(5):1541-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23653472</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Hou, Jing" sort="Hou, Jing" uniqKey="Hou J" first="Jing" last="Hou">Jing Hou</name>
</noRegion>
<name sortKey="Pan, Huixin" sort="Pan, Huixin" uniqKey="Pan H" first="Huixin" last="Pan">Huixin Pan</name>
<name sortKey="Wei, Suyun" sort="Wei, Suyun" uniqKey="Wei S" first="Suyun" last="Wei">Suyun Wei</name>
<name sortKey="Yin, Tongming" sort="Yin, Tongming" uniqKey="Yin T" first="Tongming" last="Yin">Tongming Yin</name>
<name sortKey="Zhuge, Qiang" sort="Zhuge, Qiang" uniqKey="Zhuge Q" first="Qiang" last="Zhuge">Qiang Zhuge</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000646 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000646 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30962934
   |texte=   Uneven selection pressure accelerating divergence of Populus and Salix.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30962934" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020